
About Lab 10

CRITTERS!

The basic idea of the Critter lab is simple: you
make a critter by creating a subclass of the class
critter.Critter. The only functionality a critter has
is through the 5 methods:
 getChar(self)
 getColor(self)
 getMove(self, info)
 getStats(self)
 fightOver(self, kill, oppFight)

The critter_main.py program runs a tournament
by gathering up all of the critter subclasses in the
current folder, and making 25 objects of each
class at random locations on a grid. As these
objects move around, if two try to occupy the
same square on a grid they "fight"; the winner
gets the square and the loser becomes less
healthy. If a critter becomes too unhealthy it dies
and is removed from the board.

Here are more details about the methods:
• getChar(self) is called whenever the system

needs to know what character is used to
represent the critter. It should return a single
character, such as "B".

• getColor(self) is called when the system needs
to know the critter's color. It should return
something of the form
 color.<color name in capital letters>
such as color.BLACK

color is the Python color module; your file
should import it.

• getStats(self) is called only when the critter is
created. It returns a pair of values
 attack, defense
that are used in fighting. The attack and
defense values can't add up to more than 100.

• getMove(self, info) is probably the most
complicated method in most critters. lt needs
to return one of the 5 directions ["NORTH",
"SOUTH", "EAST", "WEST", "CENTER"], where
"CENTER" means to not move.

We'll talk more about getMove later.

Fights occur when 2 critters try to occupy the
same square. One critter becomes the attacker
and the other defender. If the attacker's attack
stat is greater than the defenders defense stat
(the stats are set in the getStats() method), the
attacker wins; otherwise the defender wins. If
the attacker wins the difference between the
attacker's attack stat and the defender's defense
stat is subtracted from the defender's health. If
the defender's health goes below 0, the defender
dies and is removed from the board.

Notice that only the defender is harmed in a fight;
nothing bad happens to the attacker even if the
attacker loses.

If the defender's last move before a fight is
"CENTER" (i.e., stay still), the defender's defense
stat is doubled for the fight.

The Chameleoturtle's strategy is to not move
whenever any opponent is near. It's defense stat is
50, which doubles to 100. This means the
Chameleoturtle can never be killed; it is like a rock
that moves when nobody is around.

When two critters try to occupy the same square,
the system decides which is the attacker and which
is the defender. If one critter is moving and the
other isn't, the moving critter becomes the
attacker. If both are moving the system randomly
chooses one to be the attacker.

Most of the strategy for critters involves the
getMove(self, info) method. That info parameter
has information about squares on the board that
are near self's location.
 info.getColor(a, b)
returns the color of the critter a squares to the
right and b squares above self. For example,
 info.getColor(0, 1)
tells you the color of the critter one square above
you.

Note that your critter will crash if a2+b2>9.

There are other ways to use this info parameter in
getMove(self, info):
• info.getHealth(a, b) tells you the health of the

critter (a, b) squares away
• info.getStats(a, b) tells you the (attack, defense)

stats of that critter
• info.getChar(a, b) tells you its character
• info.getColor(a, b) tells you its color
• info.getType(a, b) tells you that critter's class

name, as a string (e.g., "Lion") Critters can
change what character and color they show, but
they can't change their class name.

For example, Chameleoturtle looks at every square
it can (every value of a and b where a2+b2<=9); if it
finds any critter that could possibly be an enemy it
stops moving. It can't be killed while it is
stationary, so this is a pretty safe strategy.

The critter's fightOver(self, kill, oppFight) is called by
the system at the end of each of the critter's fights. If
your critter survives the attack it can use this
information to prepare itself for future fights. The
oppFight parameter has the same methods as the info
parameter of getMove(self, info) but without
arguments; they refer the opponent:
 oppFight.getColor() is the opponent's color
 oppFight.getChar() is the opponent's character
and so forth

For example, Chameleoturtle does its chameleon
thing by taking on the character and color of the
last opponent it fought. Here is its fightOver()
method:
 def fightOver(self, kill, oppFight):
 self.char = oppFight.getChar()
 self.color = oppFight.getColor()

and those variables self.char and self.color are
returned by the Chameleoturtle's getChar(self)
and getColor(self) methods.

Your critter earns points by
• Killing other critters
• Surviving. Each living critter gets a point at

the end of every 100 turns.
• Grabbing a "Point Cache". These show up

as numbers on the grid. To capture a point
cache two of your critters need to attack it
in succession -- with no attacks from other
critters in between. To profit from this you
might look for ways to get your critters to
cooperate.

One way to get critters to communicate is
through class variables. For example, if one of
your critters finds a point cache at 20, 15 it
could set a class variable to [20, 15]. Any time
that variable is set your critters might try to
move towards that location. Whoever "kills"
the point cache could reset the class variable to
[].

